13 research outputs found

    Qualitative physics in virtual environments

    Get PDF
    In this paper, we describe a new approach to the creation of virtual environments, which uses qualitative physics to implement object behaviour. We adopted Qualitative Process Theory as a qualitative reasoning formalism, due to its representational properties (e.g., its orientation towards process ontologies and its explicit formulation of process’ pre-conditions). The system we describe is developed using a game engine and takes advantage of its event-based system to integrate qualitative process simulation in an interactive fashion. We use a virtual kitchen as a test environment. In this virtual world, we have implemented various behavioural aspects: physical object behaviour, complex device behaviour (appliances) and “alternative” (i.e. non-realistic) behaviours, which can all be simulated in user real-time. After a presentation of the system architecture and its implementation, we discuss example results from the prototype. This approach has potential applications in simulation and training, as well as in entertainment and digital arts. This work also constitutes a test case for the integration of an Artificial Intelligence technique into 3D user interfaces

    Alternative reality:A new platform for virtual reality art

    Get PDF

    New behavioural approaches for virtual environments

    Get PDF
    We describe a new approach to the behaviour of 3D environments that supports the definition of physical processes and interactive phenomena. The work takes as a starting point the traditional event-based architecture that underlies most game engines. These systems discretise the environments' Physics by separating the objects' kinematics from the physical processes corresponding to objects interactions. This property has been used to insert a new behavioural layer, which implements AI-based simulation techniques. We introduce the rationale behind AI-based simulation and the techniques we use for qualitative Physics, as well as a new approach to world behaviour based on the induction of causal impressions. This is illustrated through several examples on a test environment. This approach has implications for the definition of complex world behaviour or non-standard physics, as required in creative applications

    Event-based causality in virtual reality

    Get PDF

    Alternative reality::Qualitative physics for digital arts

    Get PDF
    Virtual Reality Art often involves the design of artificial worlds to provide new experiences to the spectators. A recent trend in digital art has been to address physical behaviour explicitly. However, the prospect of modifying and authoring alternative physical laws demands appropriate software tools. In this paper, we introduce the use of qualitative physics in Virtual Reality Art. We discuss how qualitative process theory can be used to specify alternative physical behaviour in virtual environments. After introducing the hardware and software architecture for our project, we discuss an example which is part of early experiments with the baseline “alternative reality ” software we are developing

    Qualitative Physics in Virtual Environments

    No full text
    In this paper, we describe a new approach to the creation of virtual environments, which uses qualitative physics to implement object behaviour. We adopted Qualitative Process Theory as a qualitative reasoning formalism, due to its representational properties (e.g., its orientation towards process ontologies and its explicit formulation of process’ pre-conditions). The system we describe is developed using a game engine and takes advantage of its event-based system to integrate qualitative process simulation in an interactive fashion. We use a virtual kitchen as a test environment. In this virtual world, we have implemented various behaviours: physical object behaviour, complex device behaviour (appliances) and “alternative ” (i.e. nonrealistic) behaviours, which can all be simulated in user real-time. After a presentation of the system architecture and its implementation, we discuss example results from the prototype. This approach has potential applications in simulation and training, as well as in entertainment and digital arts. This work also constitutes a test case for the integration of an Artificial Intelligence technique into 3D user interfaces
    corecore